Object-Based Plastic-Mulched Landcover Extraction Using Integrated Sentinel-1 and Sentinel-2 Data

Author:

Lu LizhenORCID,Tao Yuan,Di Liping

Abstract

Plastic mulching on farmland has been increasing worldwide for decades due to its superior advantages for improving crop yields. Monitoring Plastic-Mulched Land-cover (PML) can provide essential information for making agricultural management decisions and reducing PML’s eco-environmental impacts. However, mapping PML with remote sensing data is still challenging and problematic due to its complicated and mixed characteristics. In this study, a new Object-Based Image Analysis (OBIA) approach has been proposed to investigate the potential for combined use of Sentinel-1 (S1) SAR and Sentinel-2 (S2) Multi-spectral data to extract PML. Based on the ESP2 tool (Estimation of Scale Parameter 2) and ED2 index (Euclidean Distance 2), the optimal Multi-Resolution Segmentation (MRS) result is chosen as the basis of following object-based classification. Spectral and backscattering features, index features and texture features from S1 and S2 are adopted in classifying PML and other land-cover types. Three machine-learning classifiers known as the—Classification and Regression Tree (CART), the Random Forest (RF) and the Support Vector Machine (SVM) are carried out and compared in this study. The best classification result with an overall accuracy of 94.34% is achieved by using spectral, backscattering, index and textural information from integrated S1 and S2 data with the SVM classifier. Texture information is demonstrated to contribute positively to PML classifications with SVM and RF classifiers. PML mapping using SAR information alone has been greatly improved by the object-based approach to an overall accuracy of 87.72%. By adding SAR data into optical data, the accuracy of object-based PML classifications has also been improved by 1–3%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3