Performance Assessment of an Energy Management System for a Home Microgrid with PV Generation

Author:

Elkazaz MahmoudORCID,Sumner MarkORCID,Pholboon Seksak,Davies Richard,Thomas David

Abstract

Home energy management systems (HEMS) are a key technology for managing future electricity distribution systems as they can shift household electricity usage away from peak consumption times and can reduce the amount of local generation penetrating into the wider distribution system. In doing this they can also provide significant cost savings to domestic electricity users. This paper studies a HEMS which minimizes the daily energy costs, reduces energy lost to the utility, and improves photovoltaic (PV) self-consumption by controlling a home battery storage system (HBSS). The study assesses factors such as the overnight charging level, forecasting uncertainty, control sample time and tariff policy. Two management strategies have been used to control the HBSS; (1) a HEMS based on a real-time controller (RTC) and (2) a HEMS based on a model predictive controller (MPC). Several methods have been developed for home demand energy forecasting and PV generation forecasting and their impact on the HEMS is assessed. The influence of changing the battery’s capacity and the PV system size on the energy costs and the lost energy are also evaluated. A significant reduction in energy costs and energy lost to the utility can be achieved by combining a suitable overnight charging level, an appropriate sample time, and an accurate forecasting tool. The HEMS has been implemented on an experimental house emulation system to demonstrate it can operate in real-time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3