Modeling of a CPV/T-ORC Combined System Adopted for an Industrial User

Author:

Renno CarloORCID,Petito Fabio,D’Agostino DianaORCID,Minichiello FrancescoORCID

Abstract

The increasing energy demand encourages the use of photovoltaic solar systems coupled to organic rankine cycle (ORC) systems. This paper presents a model of an ORC system coupled with a concentrating photovoltaic and thermal (CPV/T) system. The CPV/T-ORC combined system, described and modeled in this paper, is sized to match the electrical load of a medium industrial user located in the South of Italy. A line-focus configuration of the CPV/T system, constituted by 16 modules with 500 triple-junction cells, is adopted. Different simulations have been realized evaluating also the direct normal irradiance (DNI) by means of the artificial neural network (ANN) and considering three input condition scenarios: Summer, winter, and middle season. Hence, the energy performances of the CPV/T-ORC system have been determined to evaluate if this integrated system can satisfy the industrial user energy loads. In particular, the peak power considered for the industrial machines is about 42 kW while other electrical, heating or cooling loads require a total peak power of 15 kW; a total electric average production of 7500 kWh/month is required. The annual analysis shows that the CPV/T-ORC system allows satisfying 100% of the electric loads from April to September; moreover, in these months the overproduction can be sold to the network or stored for a future use. The covering rates of the electrical loads are equal to 73%, 77%, and 83%, respectively for January, February, and March and 86%, 93%, and 100%, respectively for October, November, and December. Finally, the CPV/T-ORC combined system represents an ideal solution for an industrial user from the energy point of view.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3