An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack

Author:

Niestrój Roman,Rogala TomaszORCID,Skarka WojciechORCID

Abstract

This article presents a methodology for building an AGV (automated guided vehicle) power supply system simulation model with a polymer electrolyte membrane fuel cell stack (PEMFC). The model focuses on selecting the correct parameters for the hybrid energy buffering system to ensure proper operating parameters of the vehicle, i.e., minimizing vehicle downtime. The AGV uses 2 × 1.18 kW electric motors and is a development version of a battery-powered vehicle in which the battery has been replaced with a hybrid power system using a 300 W PEMFC. The research and development of the new power system were initiated by the AGV manufacturer. The model-based design (MBD) methodology is used in the design and construction of a complete simulation model for the system, which consists of the fuel cell system, energy processing, a storage system, and an energy demand models. The energy demand model has been developed based on measurements from the existing AGV, and the remaining parts of the model are based on simulation models tuned to the characteristics obtained for the individual subsystems or from commonly available data. A parametric model is created with the possibility for development and determination by simulation of either the final system or from the parameters of the individual models’ elements (components of the designed system). The presented methodology can be used to develop alternative versions of the system, in particular the selection of the correct size of supercapacitors and batteries which depend on the energy demand profile and the development of the DC/DC converter and controllers. Additionally, the varying topology of the whole system was also analyzed. Minimization of downtime has been presented as one of many possible uses of the presented model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference62 articles.

1. Optimisation of Operational Parameters Based on Simulation Numerical Model of Hydrogen Fuel Cell Stack Used for Electric Car Drive, Proceedings of the ISPE Inc. International Conference on Transdisciplinary Engineering Location: Fed Univ Technol, Curitiba, Brazil, 3–7 October 2016;Tyczka,2016

2. Model-Based Design and Optimization of Electric Vehicles, Proceedings of the 25th ISPE Inc International Conference on Transdisciplinary Engineering Location, Univ Modena & Reggio Emilia, Modena, Italy, 3–6 July 2018;Skarka,2018

3. Model-Based Optimization of Velocity Strategy for Lightweight Electric Racing Cars

4. A generic fuel cell model for the simulation of fuel cell vehicles

5. Fuel Cell Systems Explained;Larminie,2003

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3