Abstract
The ongoing diffusion of solid-state DC/DC converters makes possible a partial migration of electric power systems from the present AC paradigm to a future DC scenario. In addition, the power demand in the domestic environment is expected to grow considerably, for example, due to the progressive diffusion of electric vehicles, induction cooking and heat pumps. To face this evolution, the paper introduces a novel electric topology for a hybrid AC/DC smart house, based on the solid-state transformer technology. The electric scheme, voltage levels and converters types are thoroughly discussed to better integrate the spread of electric appliances, which are frequently based on internal DC buses, within the present AC distribution networks. Voltage levels are determined to guarantee high safety zones with negligible electric risk in the most exposed areas of the house. At the same time, the developed control schemes assure high power quality (voltage stability in the case of both load variations and network perturbations), manage power flows and local resources according to ancillary services requirements and increase the domestic network overall efficiency. Dynamic simulations are performed, making use of DIgSILENT PowerFactory software, to demonstrate the feasibility of the proposed distribution scheme for next-generation smart houses under different operating conditions.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献