Hybrid Microgrid Energy Management and Control Based on Metaheuristic-Driven Vector-Decoupled Algorithm Considering Intermittent Renewable Sources and Electric Vehicles Charging Lot

Author:

Aljohani Tawfiq M.ORCID,Ebrahim Ahmed F.ORCID,Mohammed OsamaORCID

Abstract

Energy management and control of hybrid microgrids is a challenging task due to the varying nature of operation between AC and DC components which leads to voltage and frequency issues. This work utilizes a metaheuristic-based vector-decoupled algorithm to balance the control and operation of hybrid microgrids in the presence of stochastic renewable energy sources and electric vehicles charging structure. The AC and DC parts of the microgrid are coupled via a bidirectional interlinking converter, with the AC side connected to a synchronous generator and portable AC loads, while the DC side is connected to a photovoltaic system and an electric vehicle charging system. To properly ensure safe and efficient exchange of power within allowable voltage and frequency levels, the vector-decoupled control parameters of the bidirectional converter are tuned via hybridization of particle swarm optimization and artificial physics optimization. The proposed control algorithm ensures the stability of both voltage and frequency levels during the severe condition of islanding operation and high pulsed demands conditions as well as the variability of renewable source production. The proposed methodology is verified in a state-of-the-art hardware-in-the-loop testbed. The results show robustness and effectiveness of the proposed algorithm in managing the real and reactive power exchange between the AC and DC parts of the microgrid within safe and acceptable voltage and frequency levels.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3