Abstract
The paper firstly summarizes a simple analytical model of the air gap flux-density distribution for isotropic permanent magnet (PM) synchronous machines, in the presence of static eccentricity. The model was proposed by the authors in a previous paper and is based on an efficacious analytical expression of the variable length of air gap magnetic field lines which occur in eccentric brushless machines with surface-mounted permanent magnets. The approximate expression of the air gap field makes it possible to achieve a mathematical model with concentrated parameters close to that of a PM machine without eccentricity. The expression of the armature voltages and electromagnetic torque are found, also with reference to steady-state operating conditions at fixed rotor speed and impressed currents. The differences introduced by the considered type of eccentricity are evaluated and highlighted especially with reference to the air gap inductance and to waveforms and frequency spectra of voltages and shaft torque. Numerical results in a case-study of an 8-pole, 110 kW PM motor are compared to those obtained by using finite element analysis.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献