Abstract
Validating ethnobotanical data from underexplored traditional plant remedies provides an infinite source of new pharmaceutical chemicals. The purpose of this study was to determine the phytochemical composition and several biological activities (antioxidant, anti-lipase, anti-α-amylase, anti-α-glucosidase, and antimicrobial) of aqueous, ethanol, hexane, and acetone Artemisia scoparia leaf extracts. An exhaustive technique was employed to extract A. scoparia four extracts. At the same time, standard analytical and biochemical assays were utilized to determine preliminary phytochemical screening, anti-DPPH, anti-lipase, anti-α-glucosidase, and anti-α-amylase activities. Furthermore, the antimicrobial effects against seven microbial strains were evaluated using a broth micro-dilution assay. Acetone A. scoparia extract exhibited the highest DPPH scavenging and anti-α-glucosidase activities (IC50 = 21.87 ± 0.71, and 149.75 ± 1.33 µg/mL, respectively), as well as the ethanol extract, exhibited the highest anti-α-amylase activity (IC50 = 251 ± 1.34 µg/mL) while the aqueous extract had the best anti-lipase activity (IC50 = 102 ± 0.27 µg/mL) among other extracts. Moreover, A. scoparia hexane extract has more powerful activity against Methicillin-Resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, Proteus vulgaris, Pseudomonas aeruginosa than Ciprofloxacin and Ampicillin antibiotics with MICs of 0.78 ± 0.01, 0.39 ± 0.01, 0.78 ± 0.01, and 1.56 ± 0.22 µg/mL, respectively. In addition, hexane and acetone extracts of A. scoparia have the same antifungal power as Fluconazole (1.56 ± 0.22 µg/mL). The outcomes of the current study indicated that the A. scoparia acetone, ethanol, and aqueous extracts had promising antioxidant, anti-lipase, and anti-α-amylase effects, while hexane and acetone extracts had interesting antimicrobial potential. A. scoparia four extracts of potentially bioactive compounds can be selected for further isolation and purification. Moreover, clinical investigations and in vivo approaches should be implemented to confirm the pharmaceutical benefits of these extracts against diabetes, obesity, oxidative stress, and microbial infections.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering