Wellbore Temperature and Pressure Calculation of Offshore Gas Well Based on Gas–Liquid Separated Flow Model

Author:

Jing JunORCID,Shan Hongbin,Zhu Xiaohua,Huangpu Yixiang,Tian Yang

Abstract

Compared with land wells, the production environment and reservoir depth of offshore oil and gas wells are more complex and shallower. Further, HPHT production fluid there will produce strong temperature and pressure disturbance that affects the wellbore, which easily generates wellbore safety problems, such as wellhead growth and leakage caused by the incompatible deformation of casing and cement sheath. Therefore, obtaining an accurate wellbore temperature and pressure field is the key to implementing a wellbore safety assessment. Based on the gas–liquid two-phase separated method, this paper established an improved calculation model of wellbore temperature and pressure field for offshore HPHT wells. This model also takes into account the heat transfer environment characteristics of “formation-seawater-air” and the influence of well structure. Compared with the measured data of the case well, the error of temperature and pressure calculation results of the improved model are only 0.87% and 2.46%. Further, its calculation accuracy is greatly improved compared to that of the traditional gas–liquid homogeneous flow calculation model. Based on this model, the influencing factors of wellbore temperature and pressure in offshore gas wells are analyzed. The results show that forced convection heat exchange between seawater–air and wellbore is stronger than that between wellbore and formation. Reducing the gas–liquid ratio of the product can effectively reduce wellbore temperature and increase wellbore pressure. The gas production has a significant impact on the wellbore temperature. When the gas production rises from 10 × 104⋅m3/d to 60 × 104⋅m3/d, the wellhead temperature rises from 63 °C to 99 °C. However, due to the mutual influence of friction pressure drop and hydrostatic pressure drop, wellbore pressure increases first and then decreases with the increase in gas production. The improved model can provide a more accurate estimate of the time to reach the rated wellhead temperature. Meanwhile, this model displays accurate theoretical support for the rational formulation of the production plan after the well opening, so as to avoid excessive restrictions on the initial production rate.

Funder

Youth Program of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference28 articles.

1. A V-cutter PDC bit suitable for ultra-HTHP plastic mudstones;Luo;Nat. Gas Ind.,2021

2. Formation condition and hydrocarbon accumulation model in Ledong 01 Gas Reservoir of super high temperature and high pressure in the Yinggehai Basin;Xu;Nat. Gas Ind.,2021

3. Fracture inference and optimal well placement using a multiscale history matching in a HPHT tight gas reservoir, Tarim Basin, China

4. Failure mechanism of wellbore integrity for HTHP gas wells, Shunnan block, Tarim Basin;Wang;Nat. Gas Explor. Dev.,2019

5. Mechanism of Christmas tree rise in offshore oil and gas wells and the related calculation method;Xie;Nat. Gas Ind.,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strength Behavior of Temperature-Dependent MICP-Treated Soil;Journal of Geotechnical and Geoenvironmental Engineering;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3