Titanium-Doped Mesoporous Silica with High Hydrothermal Stability for Catalytic Cracking Performance of Heavy Oil

Author:

Li Bin,Zang Jiazhong,Jin Fengying,Zhou Wei,Sun Zhenhai

Abstract

With the increasing attention to light oil, the catalytic cracking process of heavy oil is being vigorously developed. The silicon hydroxyl groups on the surface of mesoporous silica materials can be used as weak acid centers to preliminarily crack heavy oil macromolecules. Herein, a strategy of introducing titanium into a silica skeleton for modification is proposed to increase active sites, as well as improve the hydrothermal stability. After titanium modification, the mesoporous silica material has more weak acid sites, and shows better ability in deep cracking heavy oil. Notably, when the content of titanium doping is 2%, the CT(2) catalyst exhibited the best high-temperature hydrothermal stability, which can be used as a suitable heavy oil catalytic cracking catalyst. This kind of titanium-modified mesoporous silica material shows great application prospects in heavy oil catalytic cracking, which may provide a novel idea for subsequent development.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3