Abstract
As a new type of vision sensor, the dynamic and active-pixel vision sensor (DAVIS) outputs image intensity and asynchronous event streams in the same pixel array. We present a novel visual odometry algorithm based on the DAVIS in this paper. The Harris detector and the Canny detector are utilized to extract an initialized tracking template from the image sequence. The spatio-temporal window is selected by determining the life cycle of the asynchronous event streams. The alignment on timestamps is achieved by tracking the motion relationship between the template and events within the window. A contrast maximization algorithm is adopted for the estimation of the optical flow. The IMU data are used to calibrate the position of the templates during the update process that is exploited to estimate camera trajectories via the ICP algorithm. In the end, the proposed visual odometry algorithm is evaluated in several public object tracking scenarios and compared with several other algorithms. The tracking results show that our visual odometry algorithm can achieve better accuracy and lower latency tracking trajectory than other methods.
Funder
National Natural Science Foundation of China
Shaanxi Provincial Department of Education
Xi’an Science and Technology Planning Project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献