Accurate Effective Diffusivities in Multicomponent Systems

Author:

Rios William Q.,Antunes Bruno,Rodrigues Alírio E.ORCID,Portugal InêsORCID,Silva Carlos M.ORCID

Abstract

Mass transfer is an omnipresent phenomenon in the chemical and related industries for which effective diffusivities (Di,eff) constitute a useful and simple mathematical tool, especially when dealing with multicomponent mixtures. Although several models have been published for Di,eff they generally involve simplifying assumptions that severely restrict their use. The current work presents the derivation of accurate analytical equations for Di,eff, which take into account the nonideal behavior of multicomponent mixtures. Additionally, it is demonstrated that for an ideal mixture the new model reduces to the well-known equations of Bird et al., which are the exact analytical solution for ideal systems. The procedure for Di,eff estimation is described in detail and exemplified with two chemical reactions: the liquid phase ethyl acetate synthesis and the high pressure gas phase methanol synthesis. Relative to the Bird et al. ideal equations the effective diffusivities calculated with the new model show differences up to 38% for ethyl acetate synthesis when using UNIFAC model to evaluate activity coefficients. For methanol synthesis, deviations from −23% to 22% are found using PC-SAFT equation of state (EoS) and from −49% to 24% when applying the Peng–Robinson EoS to estimate fugacity coefficients. Comparisons are also performed with the models by Wilke, Burghardt and Krupiczka, Kubota et al., and Kato et al. The worst results are achieved by the Wilke and Kubota et al. equations for the liquid phase and gas phase reactions, respectively. Furthermore, it is shown that substantial errors in effective diffusivity calculations may occur when deviations from the ideal behavior are unaccounted for. This can be avoided by adopting the new rigorous approach here presented.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Volume 1: The Theory of the Steady State;Aris,1975

2. Multicomponent Mass Transfer;Taylor,1993

3. Diffusional Properties of Multicomponent Gases;Wilke;Chem. Eng. Prog.,1950

4. Transport Phenomena;Bird,1960

5. EFFECTIVE DIFFUSIVITY OF MULTI-COMPONENT GASEOUS REACTION SYSTEM

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3