Abstract
The reaction process, mechanism, and kinetics of the decarbonation of coal-series kaolinite (CSK) were investigated using the thermal analysis (TG)–infrared spectrum analysis (IR) coupling method. A pilot test was performed using a suspended calcination system. Further, the carbon content, phase composition, whiteness, oil-absorbed value, and micromorphology of calcined kaolin were characterized. Results showed that the decarburization reaction of CSK was a two-step reaction that mainly occurred in the ranges of 593 °C–836 °C. The mechanism of the decarburization reaction was a phase-boundary reaction (unreacted-core shrinking model) with an activation energy of 214.56 kJ/mol. Calcination at 900 °C or 950 °C for ~3.3 s in a suspension reactor resulted in the decarburization rate of CSK becoming >99.9%. The whiteness of calcined kaolin was mainly positively associated with the decarburization rate, and increasing the calcination temperature aided in increasing the whiteness. The oil-absorbed value of calcined kaolin was positively correlated with the specific surface area. Insufficient or over-calcination decreased the oil-absorbed value of calcined kaolin products. The calcined kaolin product with a whiteness of 89.3% and an oil-absorbed value of 76.1 g/100 g was obtained via suspension calcination process, which meets the requirements of calcined kaolin for paper-making.
Funder
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献