Abstract
With the development of the customization concept, small-batch and multi-variety production will become one of the major production modes, especially for fast-moving consumer goods. However, this production mode has two issues: high production cost and the long manufacturing period. To address these issues, this study proposes a multi-objective optimization model for the flexible flow-shop to optimize the production scheduling, which would maximize the production efficiency by minimizing the production cost and makespan. The model is designed based on hybrid algorithms, which combine a fast non-dominated genetic algorithm (NSGA-II) and a variable neighborhood search algorithm (VNS). In this model, NSGA-II is the major algorithm to calculate the optimal solutions. VNS is to improve the quality of the solution obtained by NSGA-II. The model is verified by an example of a real-world typical FFS, a tissue papermaking mill. The results show that the scheduling model can reduce production costs by 4.2% and makespan by 6.8% compared with manual scheduling. The hybrid VNS-NSGA-II model also shows better performance than NSGA-II, both in production cost and makespan. Hybrid algorithms are a good solution for multi-objective optimization issues in flexible flow-shop production scheduling.
Funder
State Key Laboratory of Pulp and Paper Engineering
Science and Technology Program of Guangzhou
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献