Abstract
Parallel Machine Scheduling (PMS) is a well-known problem in modern manufacturing. It is an optimization problem aiming to schedule n jobs using m machines while fulfilling certain practical requirements, such as total tardiness. Traditional approaches, e.g., mix integer programming and Genetic Algorithm (GA), usually fail, particularly in large-size PMS problems, due to computational time and/or memory burden and the large searching space required, respectively. This work aims to overcome such challenges by proposing a heuristic-based GA (DAS/GA). Specifically, a large-scale PMS problem with n independent jobs and m identical machines with a single server is studied. Individual heuristic algorithms (DAS) and GA are used as benchmarks to verify the performance of the proposed combined DAS/GA on 18 benchmark problems established to cover small, medium, and large PMS problems concerning standard performance metrics from the literature and a new metric proposed in this work (standardized overall total tardiness). Computational experiments showed that the heuristic part (DAS-h) of the proposed algorithm significantly enhanced the performance of the GA for large-size problems. The results indicated that the proposed algorithm should only be used for large-scale PMS problems because DAS-h trapped GA in a region of local optima, limiting its capabilities in small- and mainly medium-sized problems.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献