A Hybrid Structure to Improve Electrochemical Performance of SiO Anode Materials in Lithium-Ion Battery

Author:

Yu Jian1,Zhang Chaoran2ORCID,Huang Xiaolu3,Cao Leifeng1,Wang Aiwu1,Dai Wanjun1,Li Dikai1,Dai Yanmeng1,Zhou Cangtao1,Zhang Yaozhong4,Zhang Yafei3

Affiliation:

1. Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China

2. State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, China

3. Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, China

4. School of Materials Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road No. 800, Shanghai 200240, China

Abstract

The wide utilization of lithium-ion batteries (LIBs) prompts extensive research on the anode materials with large capacity and excellent stability. Despite the attractive electrochemical properties of pure Si anodes outperforming other Si-based materials, its unsafety caused by huge volumetric expansion is commonly admitted. Silicon monoxide (SiO) anode is advantageous in mild volume fluctuation, and would be a proper alternative if the low initial columbic efficiency and conductivity can be ameliorated. Herein, a hybrid structure composed of active material SiO particles and carbon nanofibers (SiO/CNFs) is proposed as a solution. CNFs, through electrospun processes, serve as a conductive skeleton for SiO nanoparticles and enable SiO nanoparticles to be uniformly embedded in. As a result, the SiO/CNF electrochemical performance reaches a peak at 20% the mass ratio of SiO, where the retention rate reaches 73.9% after 400 cycles at a current density of 100 mA g−1, and the discharge capacity after stabilization and 100 cycles are 1.47 and 1.84 times higher than that of pure SiO, respectively. A fast lithium-ion transport rate during cycling is also demonstrated as the corresponding diffusion coefficient of the SiO/CNF reaches ~8 × 10−15 cm2 s−1. This SiO/CNF hybrid structure provides a flexible and cost-effective solution for LIBs and sheds light on alternative anode choices for industrial battery assembly.

Funder

National Natural Science Foundation of China

Guangdong Provincial Department of Education Characteristic Innovation Project

Shanghai Pujiang Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3