Exploring the Microstructural Effect of FeCo Alloy on Carbon Microsphere Deposition and Enhanced Electromagnetic Wave Absorption

Author:

Jia Xiaoshu12,Zhang Heng1,Liu Fang2,Yi Qiaojun1,Li Chaolong1,Wang Xiao1ORCID,Piao Mingxing1ORCID

Affiliation:

1. Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

2. College of Material Science and Engineering, Chongqing University, Chongqing 400030, China

Abstract

The rational design of magnetic carbon composites, encompassing both their composition and microstructure, holds significant potential for achieving exceptional electromagnetic wave-absorbing materials (EAMs). In this study, FeCo@CM composites were efficiently fabricated through an advanced microwave plasma-assisted reduction chemical vapor deposition (MPARCVD) technique, offering high efficiency, low cost, and energy-saving benefits. By depositing graphitized carbon microspheres, the dielectric properties were significantly enhanced, resulting in improved electromagnetic wave absorption performances through optimized impedance matching and a synergistic effect with magnetic loss. A systematic investigation revealed that the laminar-stacked structure of FeCo exhibited superior properties compared to its spherical counterpart, supplying a higher number of exposed edges and enhanced catalytic activity, which facilitated the deposition of uniform and low-defect graphitized carbon microspheres. Consequently, the dielectric loss performance of the FeCo@CM composites was dramatically improved due to increased electrical conductivity and the formation of abundant heterogeneous interfaces. At a 40 wt% filling amount and a frequency of 7.84 GHz, the FeCo@CM composites achieved a minimum reflection loss value of −58.2 dB with an effective absorption bandwidth (fE) of 5.13 GHz. This study presents an effective strategy for developing high-performance EAMs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3