Growth of Monolayer MoS2 Flakes via Close Proximity Re-Evaporation

Author:

Napoleonov Blagovest1,Petrova Dimitrina12,Minev Nikolay1,Rafailov Peter3ORCID,Videva Vladimira14ORCID,Karashanova Daniela1,Ranguelov Bogdan5ORCID,Atanasova-Vladimirova Stela5ORCID,Strijkova Velichka1,Dimov Deyan16,Dimitrov Dimitre13,Marinova Vera1ORCID

Affiliation:

1. Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

2. Faculty of Engineering, South-West University “Neofit Rilski”, 2700 Blagoevgrad, Bulgaria

3. Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

4. Faculty of Chemistry and Pharmacy, Sofia University, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria

5. Institute of Physical Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

6. Department of Physics, University of Chemical Technology and Metallurgy, 8 Kl. Ohridski Blvd., 1756 Sofia, Bulgaria

Abstract

We report a two-step growth process of MoS2 nanoflakes using a low-pressure chemical vapor deposition technique. In the first step, a MoS2 layer was synthesized on a c-plane sapphire substrate. This layer was subsequently re-evaporated at a higher temperature to form mono- or few-layer MoS2 flakes. As a result, the close proximity re-evaporation enabled the growth of pristine MoS2 nanoflakes. Atomic force microscopy analysis confirmed the synthesis of nanoclusters/nanoflakes with lateral dimensions of over 10 μm and a flake height of approximately 1.3 nm, demonstrating bi-layer MoS2, whereas transmission electron microscopy analysis revealed triangular MoS2 nanoflakes, with a diffraction pattern proving the presence of single crystalline hexagonal MoS2. Raman data revealed the typical modes of high-quality MoS2 nanoflakes. Finally, we presented the photocurrent dependence of a MoS2-based photoresist under illumination with light-emitting diode of 405 nm wavelength. The measured current–voltage dependence across various luminous flux outlined the sensitivity of MoS2 to polarized light and thus opens further opportunities for applications in high-performance photodetectors with polarization sensitivity.

Funder

Research equipment of distributed research infrastructure INFRAMAT

Bulgarian Science Fund

European Regional Development Fund

European Union-NextGeneration EU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3