SCFusion: Infrared and Visible Fusion Based on Salient Compensation

Author:

Liu Haipeng1,Ma Meiyan1,Wang Meng12,Chen Zhaoyu1,Zhao Yibo1

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Province Key Laboratory of Computer, Kunming University of Science and Technology, Kunming 650500, China

Abstract

The aim of infrared and visible image fusion is to integrate the complementary information of the two modalities for high-quality fused images. However, many deep learning fusion algorithms have not considered the characteristics of infrared images in low-light scenes, leading to the problems of weak texture details, low contrast of infrared targets and poor visual perception in the existing methods. Therefore, in this paper, we propose a salient compensation-based fusion method that makes sufficient use of the characteristics of infrared and visible images to generate high-quality fused images under low-light conditions. First, we design a multi-scale edge gradient module (MEGB) in the texture mainstream to adequately extract the texture information of the dual input of infrared and visible images; on the other hand, the salient tributary is pre-trained by salient loss to obtain the saliency map based on the salient dense residual module (SRDB) to extract salient features, which is supplemented in the process of overall network training. We propose the spatial bias module (SBM) to fuse global information with local information. Finally, extensive comparison experiments with existing methods show that our method has significant advantages in describing target features and global scenes, the effectiveness of the proposed module is demonstrated by ablation experiments. In addition, we also verify the facilitation of this paper’s method for high-level vision on a semantic segmentation task.

Funder

National Natural Science Foundation of China

Yunnan Department of Science and Technology Project

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3