Desktop 3D Printing: Key for Surgical Navigation in Acral Tumors?

Author:

Moreta-Martinez RafaelORCID,Calvo-Haro José Antonio,Pérez-Mañanes Rubén,García-Sevilla MónicaORCID,Mediavilla-Santos Lydia,Pascau JavierORCID

Abstract

Surgical navigation techniques have shown potential benefits in orthopedic oncologic surgery. However, the translation of these results to acral tumor resection surgeries is challenging due to the large number of joints with complex movements of the affected areas (located in distal extremities). This study proposes a surgical workflow that combines an intraoperative open-source navigation software, based on a multi-camera tracking, with desktop three-dimensional (3D) printing for accurate navigation of these tumors. Desktop 3D printing was used to fabricate patient-specific 3D printed molds to ensure that the distal extremity is in the same position both in preoperative images and during image-guided surgery (IGS). The feasibility of the proposed workflow was evaluated in two clinical cases (soft-tissue sarcomas in hand and foot). The validation involved deformation analysis of the 3D-printed mold after sterilization, accuracy of the system in patient-specific 3D-printed phantoms, and feasibility of the workflow during the surgical intervention. The sterilization process did not lead to significant deformations of the mold (mean error below 0.20 mm). The overall accuracy of the system was 1.88 mm evaluated on the phantoms. IGS guidance was feasible during both surgeries, allowing surgeons to verify enough margin during tumor resection. The results obtained have demonstrated the viability of combining open-source navigation and desktop 3D printing for acral tumor surgeries. The suggested framework can be easily personalized to any patient and could be adapted to other surgical scenarios.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3