An Approach Based on Fog Computing for Providing Reliability in IoT Data Collection: A Case Study in a Colombian Coffee Smart Farm

Author:

Montoya-Munoz Ana IsabelORCID,Rendon Oscar Mauricio CaicedoORCID

Abstract

The reliability in data collection is essential in Smart Farming supported by the Internet of Things (IoT). Several IoT and Fog-based works consider the reliability concept, but they fall short in providing a network’s edge mechanisms for detecting and replacing outliers. Making decisions based on inaccurate data can diminish the quality of crops and, consequently, lose money. This paper proposes an approach for providing reliable data collection, which focuses on outlier detection and treatment in IoT-based Smart Farming. Our proposal includes an architecture based on the continuum IoT-Fog-Cloud, which incorporates a mechanism based on Machine Learning to detect outliers and another based on interpolation for inferring data intended to replace outliers. We located the data cleaning at the Fog to Smart Farming applications functioning in the farm operate with reliable data. We evaluate our approach by carrying out a case study in a network based on the proposed architecture and deployed at a Colombian Coffee Smart Farm. Results show our mechanisms achieve high Accuracy, Precision, and Recall as well as low False Alarm Rate and Root Mean Squared Error when detecting and replacing outliers with inferred data. Considering the obtained results, we conclude that our approach provides reliable data collection in Smart Farming.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning based Outlier Detection in IoT Greenhouse;2024 IEEE 27th International Symposium on Real-Time Distributed Computing (ISORC);2024-05-22

2. State development of precision agriculture focused on special coffee production in Southeastern of Colombia;2024-02-28

3. Enabling AI in Agriculture 4.0: A Blockchain-Based Mobile CrowdSensing Architecture;Lecture Notes on Data Engineering and Communications Technologies;2024

4. Enabling Precision Irrigation Through a Hierarchical Edge-to-Cloud System;Lecture Notes on Data Engineering and Communications Technologies;2024

5. Implementing Fog Computing in Precision Agriculture for Real-Time Soil Health Monitoring and Data Management;Studies in Computational Intelligence;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3