Abstract
Online social networking services have become the most important information-sharing medium of modern society due to several merits, such as creating opportunities to broaden social relations, easy and instant communication, and fast data propagation. These advantages, however, are being abused by malicious users to disseminate unsolicited spam messages, causing great harm to both users and service providers. To address this problem, numerous spam detection methods utilizing various spam characteristics have been proposed, but most of them suffer from several limitations. Using individual behaviors and the content of messages for spam classification has been revealed to have bounded performance, since attackers can easily fake them. Instead, exploitation of social-network-related features has been highlighted as an alternative solution, but recent spam attacks can adroitly avoid these methods by controlling their ranking through various forms of attack. In this paper, we delineate a signed-network-analysis-based spam classification method. Our key hypothesis is that the edge signs are highly likely to be determined by considering users’ social relationships, so there will be a substantial difference between the edge sign patterns of spammers and that of non-spammers. To identify our hypothesis, we employ two social psychological theories for signed networks—structural balance theory and social status theory—and the concept of surprise is adopted to quantitatively analyze the given network according to these theories. These surprise measurements are then used as the main features for spam classification. In addition, we develop a graph-converting method for applying our scheme to unsigned networks. Extensive experimental results with Twitter and Epinions datasets show that the proposed scheme obtains significant classification performance improvement compared to conventional schemes.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献