Balancing Workload and Workforce Capacity in Lean Management: Application to Multi-Model Assembly Lines

Author:

Fortuny-Santos JordiORCID,Ruiz-de-Arbulo-López PatxiORCID,Cuatrecasas-Arbós Lluís,Fortuny-Profitós Jordi

Abstract

While multi-model assembly lines are used by advanced lean companies because of their flexibility (different models of a product are produced in small lots and reach the customers in a short lead time), most of the extant literature on how to staff assembly lines focuses either on single-model lines or on mixed-model lines. The literature on multi-model lines is scarce and results given by current methods may be of limited applicability. In consequence, we develop a procedure to staff multi-model assembly lines while taking into account the principles of lean manufacturing. As a first approach, we replace the concepts of operation time and desired cycle time by their reciprocal magnitudes workload and capacity, and we define the dimensionless term of unit workload (load/capacity ratio) in order to avoid magnitudes related to time such as cycle time because, in practice, they might not be known. Next, we develop the necessary equations to apply this framework to a multi-model line. Finally, a piece of software in Python is developed, taking advantage of Google’s OR-Tools solver, to achieve an optimal multi-model line with a constant workforce and with each workstation performing the same tasks across all models. Several instances are tested to ensure the performance of this method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. Productivity gains through standardization-of-work in a manufacturing company

2. Triumph of the lean production system;Krafcik;Sloan Manag. Rev.,1988

3. The Machine That Changed the World;Womack,1990

4. Toyota production system and Kanban system Materialization of just-in-time and respect-for-human system

5. Toyota Production System: Practical Approach to Production Management;Monden,1983

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3