Application of Thermal Methods to Analyze the Properties of Coffee Silverskin and Oil Extracted from the Studied Roasting By-Product

Author:

Górska Agata,Brzezińska Rita,Wirkowska-Wojdyła Magdalena,Bryś JoannaORCID,Domian Ewa,Ostrowska-Ligęza Ewa

Abstract

The aim of the study was to characterize the thermal properties of coffee silverskin and fat extracted from the material by using differential scanning calorimetry, modulated differential scanning calorimetry and thermogravimetry/derivative thermogravimetry. Additionally, the thermokinetic parameters, oxidative stability and fatty acid composition of the extracted oil were defined. Thermal decomposition of the studied coffee roasting by-product under oxygen occurred in three defined stages. The most significant changes in weight were observed in the region of 200–500 °C and correspond to polysaccharide decomposition. These results are in agreement with the data obtained from the differential scanning calorimetry curve. On the curve course of silverskin, two main exothermic peaks can be observed with a maximum at 265 and 340 °C. These exothermic events represent the transitions of hemicellulose and cellulose. Fat extracted from silverskin turned out to be a source of polyunsaturated fatty acids with the recommended n-6 to n-3 ratio reaching the value 4:1. The studied fat was characterized by low oxidative stability. Considering the obtained results, it can be stated that thermal analysis can provide fast and reliable data concerning the composition and properties of coffee silverskin and coffee silverskin oil.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3