An Approach of Automatic SPARQL Generation for BIM Data Extraction

Author:

Guo DongmingORCID,Onstein ErlingORCID,Rosa Angela Daniela LaORCID

Abstract

Generally, building information modelling (BIM) models contain multiple dimensions of building information, including building design data, construction information, and maintenance-related contents, which are related with different engineering stakeholders. Efficient extraction of BIM data is a necessary and vital step for various data analyses and applications, especially in large-scale BIM projects. In order to extract BIM data, multiple query languages have been developed. However, the use of these query languages for data extraction usually requires that engineers have good programming skills, flexibly master query language(s), and fully understand the Industry Foundation Classes (IFC) express schema or the ontology expression of the IFC schema (ifcOWL). These limitations have virtually increased the difficulties of using query language(s) and raised the requirements on engineers’ essential knowledge reserves in data extraction. In this paper, we develop a simple method for automatic SPARQL (SPARQL Protocol and RDF Query Language) query generation to implement effective data extraction. Based on the users’ data requirements, we match users’ requirements with ifcOWL ontology concepts or instances, search the connected relationships among query keywords based on semantic BIM data, and generate the user-desired SPARQL query. We demonstrate through several case studies that our approach is effective and the generated SPARQL queries are accurate.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Informetric analysis and review of literature on the role of BIM in sustainable construction

2. Critical review of bim-based LCA method to buildings

3. A mixed review of the adoption of Building Information Modelling (BIM) for sustainability

4. From BIM towards digital twin: Strategy and future development for smart asset management;Lu,2020

5. A Review of Residential Buildings’ Sustainability Performance Using a Life Cycle Assessment Approach;Janjua;J. Sustain. Res.,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3