Picosecond Laser Processing of Photosensitive Glass for Generation of Biologically Relevant Microenvironments

Author:

Jipa Florin,Orobeti Stefana,Butnaru Cristian,Zamfirescu Marian,Axente EmanuelORCID,Sima FelixORCID,Sugioka Koji

Abstract

Various material processing techniques have been proposed for fabrication of smart surfaces that can modulate cellular behavior and address specific clinical issues. Among them, laser-based technologies have attracted growing interest due to processing versatility. Latest development of ultrashort pulse lasers with pulse widths from several tens of femtoseconds (fs) to several picoseconds (ps) allows clean microfabrication of a variety of materials at micro- and nanoscale both at surface and in volume. In this study, we addressed the possibility of 3D microfabrication of photosensitive glass (PG) by high repetition rate ps laser-assisted etching (PLAE) to improve the fabrication efficiency for the development of useful tools to be used for specific biological applications. Microfluidic structures fabricated by PLAE should provide the flow aspects, 3D characteristics, and possibility of producing functional structures to achieve the biologically relevant microenvironments. Specifically, the microfluidic structures could induce cellular chemotaxis over extended periods in diffusion-based gradient media. More importantly, the 3D characteristics could reproduce capillaries for in vitro testing of relevant organ models. Single cell trapping and analysis by using the fabricated microfluidic structures are also essential for understanding individual cell behavior within the same population. To this end, this paper demonstrates: (1) generation of 3D structures in glass volume or on surface for fabrication of microfluidic channels, (2) subtractive 3D surface patterning to create patterned molds in a controlled manor for casting polydimethylsiloxane (PDMS) structures and developing single cell microchambers, and (3) designing glass photo-masks to be used for sequel additive patterning of biocompatible nanomaterials with controlled shapes, sizes, and periodicity. Mesenchymal stem cells grown on laser-processed glass surfaces revealed no sign of cytotoxicity, while a collagen thin coating improved cellular adhesion.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. The present and future role of microfluidics in biomedical research

2. Lab-on-a-chip technology and microfluidics;Francesko,2019

3. Chapter 12 “Bioresponsive surfaces and interfaces fabricated by innovative laser approaches”;Sima,2016

4. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression

5. Interfacial geometry dictates cancer cell tumorigenicity

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3