Nanoporous Activated Carbon Derived via Pyrolysis Process of Spent Coffee: Structural Characterization. Investigation of Its Use for Hexavalent Chromium Removal

Author:

Asimakopoulos Georgios,Baikousi MariaORCID,Kostas Vasilis,Papantoniou Marios,Bourlinos Athanasios B.,Zbořil Radek,Karakassides Michael A.ORCID,Salmas Constantinos E.ORCID

Abstract

Hexavalent chromium (Cr(VI)) is a heavy metal that is highly soluble and exhibits toxic effects on biological systems. Nevertheless, it is used in many industrial applications. The adsorption process of Cr(VI), using activated carbon (AC), is under investigation globally. On the other hand, around six million tons of spent coffee is sent to landfill annually. In the spirit of cyclic economy, this research investigated the production of AC from spent coffee for the removal of Cr(VI) from wastewater. The AC was produced via pyrolysis process under a nitrogen atmosphere. Chemical activation using potassium hydroxide (KOH) occurred simultaneously with the pyrolysis process. The produced AC was tested as an absorber of Cr(VI). The best fitted kinetic model was the diffusion–chemisorption model. A 24-h adsorption experiment was carried out using a solution with a pH of 3 and an initial Cr(VI) concentration of 54.14 ppm. This resulted in an experimental maximum capacity of 109 mg/g, while the theoretical prediction was 137 mg/g. It also resulted in an initial adsorption rate (ri) of 110 (mg/(g h)). The Brunauer–Emmett–Teller surface area (SgBET) was 1372 m2/g, the Langmuir surface area (SgLang.) was 1875 m2/g, and the corrugated pore structure model surface area (SgCPSM) was 1869 m2/g. The micropore volume was 84.6%, exhibiting micropores at Dmicro1 = 1.28 and Dmicro2 = 1.6 nm. The tortuosity factor (τ) was 4.65.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3