Cable Tension Analysis Oriented the Enhanced Stiffness of a 3-DOF Joint Module of a Modular Cable-Driven Human-Like Robotic Arm

Author:

Yang KaishengORCID,Yang Guilin,Zhang Chi,Chen Chinyin,Zheng TianjiangORCID,Cui Yuguo,Chen Tehuan

Abstract

Inspired by the structure of human arms, a modular cable-driven human-like robotic arm (CHRA) is developed for safe human–robot interaction. Due to the unilateral driving properties of the cables, the CHRA is redundantly actuated and its stiffness can be adjusted by regulating the cable tensions. Since the trajectory of the 3-DOF joint module (3DJM) of the CHRA is a curve on Lie group SO(3), an enhanced stiffness model of the 3DJM is established by the covariant derivative of the load to the displacement on SO(3). In this paper, we focus on analyzing the how cable tension distribution problem oriented the enhanced stiffness of the 3DJM of the CHRA for stiffness adjustment. Due to the complexity of the enhanced stiffness model, it is difficult to solve the cable tensions from the desired stiffness analytically. The problem of stiffness-oriented cable tension distribution (SCTD) is formulated as a nonlinear optimization model. The optimization model is simplified using the symmetry of the enhanced stiffness model, the rank of the Jacobian matrix and the equilibrium equation of the 3DJM. Since the objective function is too complicated to compute the gradient, a method based on the genetic algorithm is proposed for solving this optimization problem, which only utilizes the objective function values. A comprehensive simulation is carried out to validate the effectiveness of the proposed method.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3