Abstract
The thermal stability of nanostructured microstructures consisting of a mixture of bainitic ferrite and carbon-enriched retained austenite has been studied in two steels containing 0.6 C (wt %) by tempering cycles of 1 h at temperatures ranging from 450 to 650 °C. Volume changes due to microstructural transformations during thermal treatments were measured by high-resolution dilatometry. The correlation of these results with the detailed microstructural characterization performed by X-ray diffraction and scanning electron microscope examination showed a sequence of different decomposition events beginning with the precipitation of very fine cementite particles. This precipitation, which starts in the austenite thin films and then continues in retained austenite blocks, decreases the carbon content in this phase so that fresh martensite can form from the low-carbon austenite on cooling to room temperature. In a subsequent tempering stage, the remaining austenite decomposes into ferrite and cementite, and due to carbide precipitation, the bainitic ferrite loses its tetragonality, its dislocation density is reduced, and the bainitic laths coarsen.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献