Design and Experimentation of an Aerial Seeding System for Rapeseed Based on an Air-Assisted Centralized Metering Device and a Multi-Rotor Crop Protection UAV

Author:

Huang Xiaomao,Zhang Shun,Luo ChengmingORCID,Li Wencheng,Liao Yitao

Abstract

To improve the overall mechanization level of rapeseed production in China, especially in some hilly regions where ground machinery cannot enter the fields or can only enter with very low economic benefits, a special aerial seeding system for rapeseed based on a miniature air-assisted centralized metering device was designed and tested in this study. Unlike existing commercial aerial seeding systems, the proposed seed meter was a miniaturized version derived from the traditional air-feeding seed meter on ground planters. The new version contained a redesigned seed feeding component to overcome problems of serious air backflow to the seed box and difficult seed feeding after miniaturization. Three groups of experiments were designed and conducted to optimize the parameters of the seed meter and test its performance. Results from the orthogonal experiment showed that the seed feeding component performed best when the seed layer thickness was 45 mm, the rotational speed of the gear disc was 45 r/min, and the airflow pressure was 2450 Pa. Results from the static workbench test showed that the designed seeding system had a maximum average total sowing efficiency of 537.17 g/min, with the maximum values of the stability variation coefficient of total seeding rate (seven ports) and the consistency variation coefficient between each port was 2.37% and 4.89%, respectively. Field tests further proved that the designed aerial seeding system could work stably, uniformly, and efficiently, so that the agronomic requirements of rape crop planting could be well met.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3