Dual-Window Superpixel Data Augmentation for Hyperspectral Image Classification

Author:

Acción ÁlvaroORCID,Argüello FranciscoORCID,Heras Dora B.ORCID

Abstract

Deep learning (DL) has been shown to obtain superior results for classification tasks in the field of remote sensing hyperspectral imaging. Superpixel-based techniques can be applied to DL, significantly decreasing training and prediction times, but the results are usually far from satisfactory due to overfitting. Data augmentation techniques alleviate the problem by synthetically generating new samples from an existing dataset in order to improve the generalization capabilities of the classification model. In this paper we propose a novel data augmentation framework in the context of superpixel-based DL called dual-window superpixel (DWS). With DWS, data augmentation is performed over patches centered on the superpixels obtained by the application of simple linear iterative clustering (SLIC) superpixel segmentation. DWS is based on dividing the input patches extracted from the superpixels into two regions and independently applying transformations over them. As a result, four different data augmentation techniques are proposed that can be applied to a superpixel-based CNN classification scheme. An extensive comparison in terms of classification accuracy with other data augmentation techniques from the literature using two datasets is also shown. One of the datasets consists of small hyperspectral small scenes commonly found in the literature. The other consists of large multispectral vegetation scenes of river basins. The experimental results show that the proposed approach increases the overall classification accuracy for the selected datasets. In particular, two of the data augmentation techniques introduced, namely, dual-flip and dual-rotate, obtained the best results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3