Sulfate Resistance in Cements Bearing Bottom Ash from Biomass-Fired Electric Power Plants

Author:

Medina José M.,Rojas María Isabel Sánchez deORCID,Bosque Isabel F. Sáez del,Frías MoisésORCID,Medina CésarORCID

Abstract

To address some of the gaps in the present understanding of the behavior of new supplementary cementitious materials such as bottom ash (BA) from biomass-fired electric power plants in cement manufacture, this study explored the effect of this promising material on the sulfate resistance of the end product. Cement paste prepared with 10% or 20% (previously characterized for mineralogy and chemical composition) BA was Köch–Steinegger tested for sulfate resistance. The hydration products, in turn, were analyzed before and after soaking the reference and experimental cements in sodium sulfate to determine whether the use of the addition hastened microstructural, mineralogical, or morphological decay in the material. The 56 days findings showed that the presence of BA raised binder resistance to sulfate attack. Köch–Steinegger corrosion indices of 1.29 and 1.27 for blended cements OPC + 10 BA and OPC + 20 BA, respectively, were higher than the 1.26 recorded for ordinary Portland cement (OPC). In addition, weight gain was 20.5% and volume expansion was 28.5% lower in the new materials compared to OPC. The products resulting from the external sulfate-cement interaction, gypsum and ettringite, were deposited primarily in the pores present in the pastes. The conclusion drawn is that binders bearing 10% or 20% BA are, a priori, apt for use in the design and construction of cement-based elements exposed to sulfate-laden environments.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3