Abstract
This paper presents a robust trajectory tracking control for a Permanent Magnet Synchronous Motor (PMSM) with consideration a fault, parametric uncertainties and external disturbances by effectively integrating robust optimal linear quadratic control. One kind of fault is considered in the machine, particularly the presence of fissure rotor. The dynamic model of the PMSM with the presence of fissure presents highly non-linear behaviors, which means that tuning is quite complicated, which the tuning was chosen through swarm intelligence optimization (Dragonfly Algorithm). A sensitivity analysis is carried out, in order to limit the search range to minimize the evaluation time. This methodology was used to diminish these defects during motor operation. Simulation results show that the optimal linear quadratic control method has a robust fault-tolerant performance.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献