Research on Evaluating the Filtering Method for Broiler Sound Signal from Multiple Perspectives

Author:

Sun ZhigangORCID,Gao Mengmeng,Wang Guotao,Lv Bingze,He Cailing,Teng Yuru

Abstract

Broiler sounds can provide feedback on their own body condition, to a certain extent. Aiming at the noise in the sound signals collected in broiler farms, research on evaluating the filtering methods for broiler sound signals from multiple perspectives is proposed, and the best performer can be obtained for broiler sound signal filtering. Multiple perspectives include the signal angle and the recognition angle, which are embodied in three indicators: signal-to-noise ratio (SNR), root mean square error (RMSE), and prediction accuracy. The signal filtering methods used in this study include Basic Spectral Subtraction, Improved Spectral Subtraction based on multi-taper spectrum estimation, Wiener filtering and Sparse Decomposition using both thirty atoms and fifty atoms. In analysis of the signal angle, Improved Spectral Subtraction based on multi-taper spectrum estimation achieved the highest average SNR of 5.5145 and achieved the smallest average RMSE of 0.0508. In analysis of the recognition angle, the kNN classifier and Random Forest classifier achieved the highest average prediction accuracy on the data set established from the sound signals filtered by Wiener filtering, which were 88.83% and 88.69%, respectively. These are significantly higher than those obtained by classifiers on data sets established from sound signals filtered by other methods. Further research shows that after removing the starting noise in the sound signal, Wiener filtering achieved the highest average SNR of 5.6108 and a new RMSE of 0.0551. Finally, in comprehensive analysis of both the signal angle and the recognition angle, this research determined that Wiener filtering is the best broiler sound signal filtering method. This research lays the foundation for follow-up research on extracting classification features from high-quality broiler sound signals to realize broiler health monitoring. At the same time, the research results can be popularized and applied to studies on the detection and processing of livestock and poultry sound signals, which has extremely important reference and practical value.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Postdoctoral Scientific Research Development Fund of Heilongjiang Province

Department of Education, Heilongjiang Province

Science and Technology Department, Heilongjiang Province

Heilongjiang University

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3