Abstract
Broiler sounds can provide feedback on their own body condition, to a certain extent. Aiming at the noise in the sound signals collected in broiler farms, research on evaluating the filtering methods for broiler sound signals from multiple perspectives is proposed, and the best performer can be obtained for broiler sound signal filtering. Multiple perspectives include the signal angle and the recognition angle, which are embodied in three indicators: signal-to-noise ratio (SNR), root mean square error (RMSE), and prediction accuracy. The signal filtering methods used in this study include Basic Spectral Subtraction, Improved Spectral Subtraction based on multi-taper spectrum estimation, Wiener filtering and Sparse Decomposition using both thirty atoms and fifty atoms. In analysis of the signal angle, Improved Spectral Subtraction based on multi-taper spectrum estimation achieved the highest average SNR of 5.5145 and achieved the smallest average RMSE of 0.0508. In analysis of the recognition angle, the kNN classifier and Random Forest classifier achieved the highest average prediction accuracy on the data set established from the sound signals filtered by Wiener filtering, which were 88.83% and 88.69%, respectively. These are significantly higher than those obtained by classifiers on data sets established from sound signals filtered by other methods. Further research shows that after removing the starting noise in the sound signal, Wiener filtering achieved the highest average SNR of 5.6108 and a new RMSE of 0.0551. Finally, in comprehensive analysis of both the signal angle and the recognition angle, this research determined that Wiener filtering is the best broiler sound signal filtering method. This research lays the foundation for follow-up research on extracting classification features from high-quality broiler sound signals to realize broiler health monitoring. At the same time, the research results can be popularized and applied to studies on the detection and processing of livestock and poultry sound signals, which has extremely important reference and practical value.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Postdoctoral Scientific Research Development Fund of Heilongjiang Province
Department of Education, Heilongjiang Province
Science and Technology Department, Heilongjiang Province
Heilongjiang University
Subject
General Veterinary,Animal Science and Zoology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献