High β-Lactam and Quinolone Resistance of Enterobacteriaceae from the Respiratory Tract of Sheep and Goat with Respiratory Disease

Author:

Khalifa Hazim O.ORCID,Oreiby Atef,Abd El-Hafeez Amer Ali,Abd El Latif Amira,Okanda Takashi,Kato Yasuyuki,Matsumoto Tetsuya

Abstract

During the last decade’s increase of antimicrobial resistance (AMR) in animals, animal-human transmission has become a major threat. Therefore, the present study aimed to evaluate the genetic basis of AMR in Gram-negative bacteria recovered from sheep and goats with respiratory disease. Nasal and ocular swabs were collected from 69 diseased animals, and 76 Gram-negative bacterial isolates were identified from 59 animals. All isolates were checked phenotypically for resistance and genotypically for different resistance mechanisms, including β-lactam, quinolone, and aminoglycoside resistance. Our results demonstrated that 9.2% (95% CI 4.5–17.8%) of the isolates were multidrug-resistant, with high resistance rates to β-lactams and quinolones, and 11.8% (95% CI 6.4–21%) and 6.6% (95% CI 2.8–14.5%) of the isolates were phenotypically positive for AmpC and ESBL, respectively. Genotypically, blaTEM was the most identified β-lactamase encoding gene in 29% (95% CI 20–40%) of the isolates, followed by blaSHV (14.5%, 95% CI 8.3–24.1%) and blaCTX-M (4%, 95% CI 1.4–11%). Furthermore, 7.9% (95% CI 3.7–16.2%) of the isolates harbored plasmid-mediated quinolone resistance gene qnrS. Our study revealed for the first time to our knowledge high β-lactam and quinolone resistance associated with the bacteria recovered from sheep and one goat with respiratory disease. Furthermore, different antimicrobial resistant determinants were identified for the first time from animals in Africa, such as blaLEN-13/55, blaTEM-176 and blaTEM-198/214. This study highlights the potential role of sheep and goats in disseminating AMR determinants and/or resistant bacteria to humans. The study regenerates interest for the development of a One Health approach to combat this formidable problem.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference40 articles.

1. Drivers, Dynamics and Epidemiology of Antimicrobial Resistance in Animal Production;Wall,2016

2. Using the best available data to estimate the cost of antimicrobial resistance: a systematic review

3. ECDC/EFSA/EMA First joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals;EFSA J.,2015

4. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum β-lactamase producing Enterobacteriaceae recovered from fecal specimens of animals

5. First Report of Multidrug-Resistant Carbapenemase-Producing Bacteria Coharboring mcr-9 Associated with Respiratory Disease Complex in Pets: Potential of Animal-Human Transmission

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3