Spectral-Based Classification of Plant Species Groups and Functional Plant Parts in Managed Permanent Grassland

Author:

Britz RolandORCID,Barta NorbertORCID,Schaumberger AndreasORCID,Klingler AndreasORCID,Bauer AlexanderORCID,Pötsch Erich M.ORCID,Gronauer AndreasORCID,Motsch ViktoriaORCID

Abstract

Grassland vegetation typically comprises the species groups grasses, herbs, and legumes. These species groups provide different functional traits and feed values. Therefore, knowledge of the botanical composition of grasslands can enable improved site-specific management and livestock feeding. A systematic approach was developed to analyze vegetation of managed permanent grassland using hyperspectral imaging in a laboratory setting. In the first step, hyperspectral images of typical grassland plants were recorded, annotated, and classified according to species group and plant parts, that is, flowers, leaves, and stems. In the second step, three different machine learning model types—multilayer perceptron (MLP), random forest (RF), and partial least squares discriminant analysis (PLS-DA)—were trained with pixel-wise spectral information to discriminate different species groups and plant parts in individual models. The influence of radiometric data calibration and specific data preprocessing steps on the overall model performance was also investigated. While the influence of proper radiometric calibration was negligible in our setting, specific preprocessing variants, including smoothening and derivation of the spectrum, were found to be beneficial for classification accuracy. Compared to extensively preprocessed data, raw spectral data yielded no statistically decreased performance in most cases. Overall, the MLP models outperformed the PLS-DA and RF models and reached cross-validation accuracies of 96.8% for species group and 88.6% for plant part classification. The obtained insights provide an essential basis for future data acquisition and data analysis of grassland vegetation.

Funder

Austrian Research Promotion Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3