AFE-RCNN: Adaptive Feature Enhancement RCNN for 3D Object Detection

Author:

Shuang Feng,Huang Hanzhang,Li YongORCID,Qu RuiORCID,Li Pei

Abstract

The point clouds scanned by lidar are generally sparse, which can result in fewer sampling points of objects. To perform precise and effective 3D object detection, it is necessary to improve the feature representation ability to extract more feature information of the object points. Therefore, we propose an adaptive feature enhanced 3D object detection network based on point clouds (AFE-RCNN). AFE-RCNN is a point-voxel integrated network. We first voxelize the raw point clouds and obtain the voxel features through the 3D voxel convolutional neural network. Then, the 3D feature vectors are projected to the 2D bird’s eye view (BEV), and the relationship between the features in both spatial dimension and channel dimension is learned by the proposed residual of dual attention proposal generation module. The high-quality 3D box proposals are generated based on the BEV features and anchor-based approach. Next, we sample key points from raw point clouds to summarize the information of the voxel features, and obtain the key point features by the multi-scale feature extraction module based on adaptive feature adjustment. The neighboring contextual information is integrated into each key point through this module, and the robustness of feature processing is also guaranteed. Lastly, we aggregate the features of the BEV, voxels, and point clouds as the key point features that are used for proposal refinement. In addition, to ensure the correlation among the vertices of the bounding box, we propose a refinement loss function module with vertex associativity. Our AFE-RCNN exhibits comparable performance on the KITTI dataset and Waymo open dataset to state-of-the-art methods. On the KITTI 3D detection benchmark, for the moderate difficulty level of the car and the cyclist classes, the 3D detection mean average precisions of AFE-RCNN can reach 81.53% and 67.50%, respectively.

Funder

Guangxi Key Laboratory of Manufacturing System & Advanced Manufacturing Technology

The National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3