Flood Monitoring Using Enhanced Resolution Passive Microwave Data: A Test Case over Bangladesh

Author:

Colosio PaoloORCID,Tedesco Marco,Tellman Elizabeth

Abstract

Monitoring floods is a major issue in water resources management and risk mitigation, especially in the Global South. Optical and radar observations, even providing a fine spatial resolution, are still limited by cloud cover interaction or insufficient temporal resolution. On the other hand, passive microwave (PMW) sensors collect information on a daily frequency with minor cloud cover interaction, but they have been historically limited in terms of spatial resolution. Here, we evaluate the capability of an enhanced spatial resolution PMW dataset (3.125 km) in monitoring spatio-temporal evolution of flood events, focusing on a major flood event that occurred in October 2005 in Bangladesh. We apply an algorithm aimed to remove the seasonal variability of surface temperature from the PMW timeseries, exploiting the difference in emissivity between dry and water-covered pixels. We assess the capability of the algorithm in capturing flood evolution and extension through the comparison with quantities obtained from optical data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and water level measurements. We also compare the enhanced product with the historical coarser resolution dataset by means of a variogram-based analysis to evaluate the improvements in terms of spatial representation. Finally, we evaluate the possibility to extract the water fraction within a single pixel by using an Advanced Microwave Scanning Radiometer—Earth Observing System (AMSR-E) emissivity dataset and compare the estimates with MODIS-derived water fractions. Our results show that the enhanced PMW product outperforms the coarser one when compared to flood mapped from optical data based on information content, indicating that it is possible to integrate such a product into the mapping of floods at a global scale on a daily basis.

Funder

Columbia University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3