A Transformer-Based Coarse-to-Fine Wide-Swath SAR Image Registration Method under Weak Texture Conditions

Author:

Fan Yibo,Wang FengORCID,Wang HaipengORCID

Abstract

As an all-weather and all-day remote sensing image data source, SAR (Synthetic Aperture Radar) images have been widely applied, and their registration accuracy has a direct impact on the downstream task effectiveness. The existing registration algorithms mainly focus on small sub-images, and there is a lack of available accurate matching methods for large-size images. This paper proposes a high-precision, rapid, large-size SAR image dense-matching method. The method mainly includes four steps: down-sampling image pre-registration, sub-image acquisition, dense matching, and the transformation solution. First, the ORB (Oriented FAST and Rotated BRIEF) operator and the GMS (Grid-based Motion Statistics) method are combined to perform rough matching in the semantically rich down-sampled image. In addition, according to the feature point pairs, a group of clustering centers and corresponding images are obtained. Subsequently, a deep learning method based on Transformers is used to register images under weak texture conditions. Finally, the global transformation relationship can be obtained through RANSAC (Random Sample Consensus). Compared with the SOTA algorithm, our method’s correct matching point numbers are increased by more than 2.47 times, and the root mean squared error (RMSE) is reduced by more than 4.16%. The experimental results demonstrate that our proposed method is efficient and accurate, which provides a new idea for SAR image registration.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

China High-resolution Earth Observation System (CHEOS)-Aerial Observation System Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3