Noninvasive Non-Contact SpO2 Monitoring Using an Integrated Polarization-Sensing CMOS Imaging Sensor

Author:

Sarkar MukulORCID,Assaad MaherORCID

Abstract

Background:In the diagnosis and primary health care of an individual, estimation of the pulse rate and blood oxygen saturation (SpO2) is critical. The pulse rate and SpO2 are determined by methods including photoplethysmography (iPPG), light spectroscopy, and pulse oximetry. These devices need to be compact, non-contact, and noninvasive for real-time health monitoring. Reflection-based iPPG is becoming popular as it allows non-contact estimation of the heart rate and SpO2. Most iPPG methods capture temporal data and form complex computations, and thus real-time measurements and spatial visualization are difficult. Method:In this research work, reflective mode polarized imaging-based iPPG is proposed. For polarization imaging, a custom image sensor with wire grid polarizers on each pixel is designed. Each pixel has a wire grid of varying transmission axes, allowing phase detection of the incoming light. The phase information of the backscattered light from the fingertips of 12 healthy volunteers was recorded in both the resting as well as the excited states. These data were then processed using MATLAB 2021b software. Results: The phase information provides quantitative information on the reflection from the superficial and deep layers of skin. The ratio of deep to superficial layer backscattered phase information is shown to be directly correlated and linearly increasing with an increase in the SpO2 and heart rate. Conclusions: The phase-based measurements help to monitor the changes in the resting and excited state heart rate and SpO2 in real time. Furthermore, the use of the ratio of phase information helps to make the measurements independent of the individual skin traits and thus increases the accuracy of the measurements. The proposed iPPG works in ambient light, relaxing the instrumentation requirement and helping the system to be compact and portable.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3