Secure Routing-Based Energy Optimization for IoT Application with Heterogeneous Wireless Sensor Networks

Author:

Nagaraju RegondaORCID,C Venkatesan,J Kalaivani,G Manju,Goyal S. B.ORCID,Verma ChamanORCID,Safirescu Calin OvidiuORCID,Mihaltan Traian Candin

Abstract

Wireless sensor networks (WSNs) and the Internet of Things (IoT) are increasingly making an impact in a wide range of domain-specific applications. In IoT-integrated WSNs, nodes generally function with limited battery units and, hence, energy efficiency is considered as the main design challenge. For homogeneous WSNs, several routing techniques based on clusters are available, but only a few of them are focused on energy-efficient heterogeneous WSNs (HWSNs). However, security provisioning in end-to-end communication is the main design challenge in HWSNs. This research work presents an energy optimizing secure routing scheme for IoT application in heterogeneous WSNs. In our proposed scheme, secure routing is established for confidential data of the IoT through sensor nodes with heterogeneous energy using the multipath link routing protocol (MLRP). After establishing the secure routing, the energy and network lifetime is improved using the hybrid-based TEEN (H-TEEN) protocol, which also has load balancing capacity. Furthermore, the data storage capacity is improved using the ubiquitous data storage protocol (U-DSP). This routing protocol has been implemented and compared with two other existing routing protocols, and it shows an improvement in performance parameters such as throughput, energy efficiency, end-to-end delay, network lifetime and data storage capacity.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference30 articles.

1. Radio Frequency Identification (RFID) Connected Tag Communications Protocol and Related Systems and Methods;Downie;U.S. Patent,2017

2. System for, and Method of, Accurately and Rapidly Determining, in Real-Time, True Bearings of Radio Frequency Identification (RFID) Tags Associated with Items in a Controlled area;Koch;U.S. Patent,2016

3. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

4. Cost analysis of hybrid adaptive routing protocol for heterogeneous wireless sensor network

5. Green Industrial Internet of Things Architecture: An Energy-Efficient Perspective

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3