Abstract
As a new energy source, gas hydrates have attracted worldwide attention, but their exploration and development face enormous challenges. Thus, it has become increasingly crucial to identify hydrate distribution accurately. Electrical resistivity tomography (ERT) can be used to detect the distribution of hydrate deposits. An ERT inversion network (ERTInvNet) based on a deep neural network (DNN) is proposed, with strong learning and memory capabilities to solve the ERT nonlinear inversion problem. 160,000 samples about hydrate distribution are generated by numerical simulation, of which 10% are used for testing. The impact of different deep learning parameters (such as loss function, activation function, and optimizer) on the performance of ERT inversion is investigated to obtain a more accurate hydrate distribution. When the Logcosh loss function is enabled in ERTInvNet, the average correlation coefficient (CC) and relative error (RE) of all samples in the test sets are 0.9511 and 0.1098. The results generated by Logcosh are better than MSE, MAE, and Huber. ERTInvNet with Selu activation function can better learn the nonlinear relationship between voltage and resistivity. Its average CC and RE of all samples in the test set are 0.9449 and 0.2301, the best choices for Relu, Selu, Leaky_Relu, and Softplus. Compared with Adadelta, Adagrad, and Aadmax, Adam has the best performance in ERTInvNet with the optimizer. Its average CC and RE of all samples in the test set are 0.9449 and 0.2301, respectively. By optimizing the critical parameters of deep learning, the accuracy of ERT in identifying hydrate distribution is improved.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献