Design and Research on Electro-Hydraulic Drive and Energy Recovery System of the Electric Excavator Boom

Author:

Li LinORCID,Zhang Tiezhu,Wu KaiweiORCID,Lu Liqun,Lin Lianhua,Xu Haigang

Abstract

The hydraulic accumulator has the advantages of high power density, fast response, stable operation and high cost performance. However, compared with the electric energy storage method, the hydraulic accumulator has low energy density and large pressure fluctuation while absorbing and discharging energy, which severely limits its application in hydraulic excavators. To improve the potential energy loss of the boom during the lowering process, an electro-hydraulic drive and energy recovery system for excavator booms (EHDR-EEB) based on a battery and accumulator is proposed. As a result, a simulation model of the electro-hydraulic drive and energy management strategy of a 1.6 t pure electric hydraulic excavator is built to investigate the energy regeneration and utilization. The simulation outcomes show that the potential energy recovery rate is as high as 92%. This research on EHDR-EEB makes a significant contribution to the economic improvement of electric hydraulic excavators.

Funder

Dynamic Characteristic Analysis and Optimal Control Research of Internal Combustion Constrained Linear Power Generation System

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3