Recent Advances on CO2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H2

Author:

Varvoutis GeorgiosORCID,Lampropoulos Athanasios,Mandela Evridiki,Konsolakis MichalisORCID,Marnellos George E.ORCID

Abstract

The increasing trend in global energy demand has led to an extensive use of fossil fuels and subsequently in a marked increase in atmospheric CO2 content, which is the main culprit for the greenhouse effect. In order to successfully reverse this trend, many schemes for CO2 mitigation have been proposed, taking into consideration that large-scale decarbonization is still infeasible. At the same time, the projected increase in the share of variable renewables in the future energy mix will necessitate large-scale curtailment of excess energy. Collectively, the above crucial problems can be addressed by the general scheme of CO2 hydrogenation. This refers to the conversion of both captured CO2 and green H2 produced by RES-powered water electrolysis for the production of added-value chemicals and fuels, which are a great alternative to CO2 sequestration and the use of green H2 as a standalone fuel. Indeed, direct utilization of both CO2 and H2 via CO2 hydrogenation offers, on the one hand, the advantage of CO2 valorization instead of its permanent storage, and the direct transformation of otherwise curtailed excess electricity to stable and reliable carriers such as methane and methanol on the other, thereby bypassing the inherent complexities associated with the transformation towards a H2-based economy. In light of the above, herein an overview of the two main CO2 abatement schemes, Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU), is firstly presented, focusing on the route of CO2 hydrogenation by green electrolytic hydrogen. Next, the integration of large-scale RES-based H2 production with CO2 capture units on-site industrial point sources for the production of added-value chemicals and energy carriers is contextualized and highlighted. In this regard, a specific reference is made to the so-called Power-to-X schemes, exemplified by the production of synthetic natural gas via the Power-to-Gas route. Lastly, several outlooks towards the future of CO2 hydrogenation are presented.

Funder

European Union and Greek national funds through the Greece 2.0 National Recovery and Resilience Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference255 articles.

1. United Nations World: Total Population https://population.un.org/wpp/Graphs/Probabilistic/POP/TOT/900

2. International Energy Agency Data and Statistics https://www.iea.org/data-and-statistics

3. XXXI.On the influence of carbonic acid in the air upon the temperature of the ground

4. Carbon Capture, Utilization and Storage (CCUS)

5. A Techno-economic Analysis and Systematic Review of Carbon Capture and Storage (CCS) Applied to the Iron and Steel, Cement, Oil Refining and Pulp and Paper Industries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3