A High-Order Load Model and the Control Algorithm for an Aerospace Electro-Hydraulic Actuator

Author:

Zhao Shoujun,Chen Keqin,Zhang Xiaosha,Zhao Yingxin,Jing Guanghui,Yin Chuanwei,Xiao Xue

Abstract

It is difficult to describe precisely, and thus control satisfactorily, the dynamics of an electro-hydraulic actuator to drive a high thrust liquid launcher engine, whose structural resonant frequency is usually low due to its heavy inertia and complicated mass distribution, let alone one to drive a heavy kerolox engine with high-order dynamics. By transforming classic control block diagrams, a baseline two-mass-two-spring load model and a normalized actuator-engine system model were developed for understanding the basic physics and methodology, where a fourth-order transfer function is used to model the multi-resonance-frequency engine body outside of the rod position loop, another fourth-order transfer function with two pairs of conjugated zeros and poles to represent the composite hydro-mechanical resonance effect in the closed rod position loop. A sixth-order model was thereafter proposed for even higher dynamics. The model parameters were identified and optimized by a full factor search approach. To meet the stringent specification of static and dynamic performances, it was demonstrated that a notch filter network combined with other controllers is needed since the traditional dynamic pressure feedback (DPF) is difficult to handle the high-order dynamics. The approach has been validated by simulation, experiments and successful flights. The models, analysis, data and insights were elaborated.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference28 articles.

1. Chapter V, Hydraulic Power Element;Herbert,1967

2. Hydraulic Servo Systems. IEI/Fluid and Mechanical Engineering Systems. TMHP51 Fluid and Mechanical Engineering Systems;Rydberg,2008

3. Electrohydraulic thrust vector control of twin rocket engines with position feedback via angular transducers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3