A Comprehensive Study on the Optimal Design of Magnetorheological Dampers for Improved Damping Capacity and Dynamical Adjustability

Author:

Wei Liankang,Lv HongzhanORCID,Yang Kehang,Ma Weiguang,Wang Junzheng,Zhang WenjunORCID

Abstract

Purpose: We aim to provide a systematic methodology for the optimal design of MRD for improved damping capacity and dynamical adjustability in performing its damping function. Methods: A modified Bingham model is employed to model and simulate the MRD considering the MR fluid’s compressibility. The parameters that describe the structure of MRD and the property of the fluid are systematically examined for their contributions to the damping capacity and dynamically adjustability. A response surface method is employed to optimize the damping force and dynamically adjustable coefficient for a more practical setting related to the parameters. Results: The simulation system effectively shows the hysteretic characteristics of MRDs and shows our common sense understanding that the damping gap width and yoke diameter have significant effects on the damping characteristics of MRD. By taking a typical MRD device setup, optimal design shows an increase of the damping force by 33% and an increase of the dynamically adjustable coefficient by 17%. It is also shown that the methodology is applicable to other types of MDR devices. Conclusion: The compressibility of MR fluid is one of the main reasons for the hysteretic characteristics of MRD. The proposed simulation and optimization methods can effectively improve the MRD’s damping performance in the design stage.

Funder

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3