Abstract
An online algebraic estimation technique for natural and forcing frequencies for a class of uncertain and lumped-parameter vibrating mechanical systems with n degrees of freedom is described. In general, realistic vibrating systems can be affected by unknown exogenous excitation forces with multiple and independent frequency harmonic components. Hence, natural frequencies as well as excitation force frequencies can be simultaneously computed from an algebraic approach into a small interval of time during online operation of the mechanical system. Measurements of an available output signal, associated with some specific degree of freedom, are only required for frequency estimation in time-domain. Information on mass, stiffness and damping matrices are not necessary for multifrequency estimation algorithms. Some analytical, numerical and experimental results on a cantilever Euler–Bernoulli beam are described to show and validate the acceptable estimation of multiple frequencies in forced multiple degrees of freedom vibrating systems.
Subject
Control and Optimization,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献