Soft Hybrid Suction Cup Capable of Sticking to Various Objects and Environments

Author:

Tsukagoshi HideyukiORCID,Osada Yuichi

Abstract

A universal suction cup that can stick to various objects expands the areas in which robots can work. However, the size, shape, and surface roughness of objects to which conventional suction cups can stick are limited. To overcome this challenge, we propose a new hybrid suction cup structure that uses the adhesive force of sticky gel and the suction force of negative pressure. In addition, a flexible and thin pneumatic balloon actuator with a check valve function is installed in the interior, enabling the controllable detachment from objects. The prototype has an outer diameter of 55 mm, a weight of 18.8 g, and generates an adsorption force of 80 N in the vertical direction and 60 N in the shear direction on porous walls where conventional suction cups struggle to adsorb. We confirmed that parts smaller than the suction cup and fragile potato chips are adsorbed by the prototype. Finally, the effectiveness of the proposed method is verified through experiments in which a drone with the prototypes can be attached to and detached from concrete walls and ceilings while flying; the possibility of adsorption to dusty and wet plates is discussed.

Funder

JSPS

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A soft bioinspired suction cup with tunable adhesion force using shape memory alloy;Smart Materials and Structures;2024-08-14

2. Classification and Evaluation of Octopus‐Inspired Suction Cups for Soft Continuum Robots;Advanced Science;2024-06-14

3. Optimal design and experiment of bionic vacuum suckers with high attachment properties;Journal of Adhesion Science and Technology;2024-05

4. Bioinspired multiscale adaptive suction on complex dry surfaces enhanced by regulated water secretion;Proceedings of the National Academy of Sciences;2024-04

5. Hand assistive device with suction cup (HADS) technology for poststroke patients;Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3