Research on Sequential Decision-Making of Major Accidents with Incomplete Information

Author:

Xia Dengyou1,Chen Changlin1,Zheng Ce2,Xin Jing1,Zhu Yi1

Affiliation:

1. Hebei Key Laboratory of Emergency Rescue Technology, China People’s Police University, Langfang 065000, China

2. Heihe Fire and Rescue Detachment, Heihe 164300, China

Abstract

In order to solve the problem of emergency decision-making with incomplete information and deal with the accident information in different time series at the scenes of major accidents, this paper proposes a method of sequential decision-making by utilizing the relevant knowledge of D-S evidence theory and game theory. Firstly, we took an oil tank fire accident as an example and sorted out historical cases and expert experiences to establish a logical relationship between key accident scenes and accident scene symptoms in the accident. Meanwhile, we applied the logistic regression analysis method to obtain the basic probability distribution of each key accident scene in the oil tank fire, and on this basis, we constructed an evidence set of the fire. Secondly, based on the D-S evidence theory, we effectively quantified the knowledge uncertainty and evidence uncertainty, with the incomplete and insufficient information taken as an evidence system of the development of key accident scenes to construct a situation prediction model of these accident scenes. Thirdly, based on the game theory, we viewed emergency decision-makers and major accidents as two sides of the game to compare and analyze accident states at different time points and solve the contradiction between loss costs of decision-making and information collection costs. Therefore, this paper has provided a solution for the optimization of accident schemes at different time stages, thus realizing the sequential decision-making at the scenes of major accidents. Furthermore, we combined the situation prediction model with sequential decision-making, with the basic steps described below: (1) We drew up an initial action plan in the case of an extreme lack of information; then, we (2) started to address the accident and constructed a framework of accident identification, (3) collected and dealt with the continuously added evidence information with the evolution of the accident, (4) calculated the confidence levels of key accident scenarios after evaluating different evidence and then predicted the accident state in the next stage, and (5) calculated the profit–loss ratio between the current decision-making scheme and the decision-making scheme of the next stage. Finally, we (6) repeated steps (3) to (5) until the accident completely vanished. We verified the feasibility of the proposed method with the explosion accident of the Zhangzhou P.X. project in Fujian on 6 April used as an example. Based on the D-S evidence theory, this method employs approximate reasoning on the incomplete and insufficient information obtained at the scenes of major accidents, thus realizing the situation prediction of key scenes of these accidents. Additionally, this method uses the game theory to solve the contradiction between decision-making loss costs and information collection costs, thus optimizing the decision-making schemes at different time stages of major accidents.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference24 articles.

1. Advisement and suggestions to scientific problems of emergency management for public incidents;Fan;Bull. Natl. Nat. Sci. Found. China,2007

2. Liu, X.Q. (2017). Research on Assistant Decision-Making Method for Railway Emergency Management. [Ph.D. Thesis, China Academy of Railway Sciences].

3. Fuzzy multi-attribute decision making of internet public opinion emergencies based on degree of synergetic;Liu;Shanghai Manag. Sci.,2021

4. An Emergency Response Decision-Making Method for Emergency Events Based on Prospect Theory and Probabilistic Linguistic Terms;Li;J. Syst. Manag.,2023

5. Dynamic Adjustment Method of Emergency Decision Scheme for Major Incidents Based on Big Data Analysis of Public Preference;Xu;Oper. Res. Manag. Sci.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3