Quantitative Comparison of Maximum Heat Release Rates of Thermoplastics in Open and Compartment Fire Environments

Author:

Yun Hong-Seok1,Hwang Cheol-Hong2ORCID

Affiliation:

1. Department of Fire Safety Research, Korean Institute of Civil Engineering and Building Technology, Hwaseong 18544, Republic of Korea

2. Department of Fire and Disaster Prevention, Daejeon University, Daejeon 34520, Republic of Korea

Abstract

Consideration of appropriate fire scenarios in the simulations of the Fire Dynamics Simulator (FDS) for the fire-risk assessment of buildings is a critical factor in the development of prevention and response measures. The user dependence of the FDS input parameters can threaten the reliability of the fire-risk assessment. An experimental study was conducted to establish correlations for considering appropriate fire scenarios using polymethyl methacrylate. To examine the changes in the maximum-heat-release rates (HRRs) according to the combustion environment, nine burners varying in size at 25 mm intervals were burned in open and compartment environments. The results indicated that compared with the fire phenomenon in the open environment, the maximum HRR and fire growth rate of the compartment fire were increased by factors of 3–50. Additionally, the compartment fire phenomena could be classified into three stages according to the changes in the aforementioned two physical quantities. An analysis of the experimental results revealed a correlation for predicting the maximum HRR of a compartment fire with various ventilation conditions using only the experimental results for the open environment. The maximum HRR predicted through this correlation exhibited an error of <15% relative to the values measured in the experiment.

Funder

National Fire Agency R&D Program

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3